Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 13(1): 5074, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: covidwho-2267004

RESUMO

Influenza virosomes serve as antigen delivery vehicles and pre-existing immunity toward influenza improves the immune responses toward antigens. Here, vaccine efficacy was evaluated in non-human primates with a COVID-19 virosome-based vaccine containing a low dose of RBD protein (15 µg) and the adjuvant 3M-052 (1 µg), displayed together on virosomes. Vaccinated animals (n = 6) received two intramuscular administrations at week 0 and 4 and challenged with SARS-CoV-2 at week 8, together with unvaccinated control animals (n = 4). The vaccine was safe and well tolerated and serum RBD IgG antibodies were induced in all animals and in the nasal washes and bronchoalveolar lavages in the three youngest animals. All control animals became strongly sgRNA positive in BAL, while all vaccinated animals were protected, although the oldest vaccinated animal (V1) was transiently weakly positive. The three youngest animals had also no detectable sgRNA in nasal wash and throat. Cross-strain serum neutralizing antibodies toward Wuhan-like, Alpha, Beta, and Delta viruses were observed in animals with the highest serum titers. Pro-inflammatory cytokines IL-8, CXCL-10 and IL-6 were increased in BALs of infected control animals but not in vaccinated animals. Virosomes-RBD/3M-052 prevented severe SARS-CoV-2, as shown by a lower total lung inflammatory pathology score than control animals.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Macaca mulatta , Virossomos , SARS-CoV-2 , Receptor 7 Toll-Like , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Anticorpos Amplamente Neutralizantes , Vacinas contra COVID-19 , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Nucl Med Biol ; 112-113: 1-8, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1867632

RESUMO

RATIONALE: The aim of this study was to investigate the application of [18F]DPA714 to visualize the inflammation process in the lungs of SARS-CoV-2-infected rhesus monkeys, focusing on the presence of pulmonary lesions, activation of mediastinal lymph nodes and surrounded lung tissue. METHODS: Four experimentally SARS-CoV-2 infected rhesus monkeys were followed for seven weeks post infection (pi) with a weekly PET-CT using [18F]DPA714. Two PET images, 10 min each, of a single field-of-view covering the chest area, were obtained 10 and 30 min after injection. To determine the infection process swabs, blood and bronchoalveolar lavages (BALs) were obtained. RESULTS: All animals were positive for SARS-CoV-2 in both the swabs and BALs on multiple timepoints pi. The initial development of pulmonary lesions was already detected at the first scan, performed 2-days pi. PET revealed an increased tracer uptake in the pulmonary lesions and mediastinal lymph nodes of all animals from the first scan obtained after infection and onwards. However, also an increased uptake was detected in the lung tissue surrounding the lesions, which persisted until day 30 and then subsided by day 37-44 pi. In parallel, a similar pattern of increased expression of activation markers was observed on dendritic cells in blood. PRINCIPAL CONCLUSIONS: This study illustrates that [18F]DPA714 is a valuable radiotracer to visualize SARS-CoV-2-associated pulmonary inflammation, which coincided with activation of dendritic cells in blood. [18F]DPA714 thus has the potential to be of added value as diagnostic tracer for other viral respiratory infections.


Assuntos
COVID-19 , Pneumonia , Animais , COVID-19/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/patologia , Macaca mulatta , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Pirazóis , Pirimidinas , SARS-CoV-2
3.
Front Immunol ; 13: 857440, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1817942

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic. Here, we present non-human primate immunogenicity and protective efficacy data generated with the capsid virus-like particle (cVLP)-based vaccine ABNCoV2 that has previously demonstrated immunogenicity in mice. In rhesus macaques, a single vaccination with either 15 or 100 µg ABNCoV2 induced binding and neutralizing antibodies in a dose-dependent manner, at levels comparable to those measured in human convalescents. A second vaccine administration led to a >50-fold increase in neutralizing antibodies, with 2-log higher mean levels in the 100-µg ABNCoV2 group compared with convalescent samples. Upon SARS-CoV-2 challenge, a significant reduction in viral load was observed for both vaccine groups relative to the challenge control group, with no evidence of enhanced disease. Remarkably, neutralizing antibody titers against an original SARS-CoV-2 isolate and against variants of concern were comparable, indicating a potential for broad protection afforded by ABNCoV2, which is currently in clinical testing.


Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Capsídeo , Proteínas do Capsídeo , Humanos , Macaca mulatta , SARS-CoV-2
4.
Front Immunol ; 13: 845887, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-1775679

RESUMO

Novel safe, immunogenic, and effective vaccines are needed to control the COVID-19 pandemic, caused by SARS-CoV-2. Here, we describe the safety, robust immunogenicity, and potent efficacy elicited in rhesus macaques by a modified vaccinia virus Ankara (MVA) vector expressing a full-length SARS-CoV-2 spike (S) protein (MVA-S). MVA-S vaccination was well tolerated and induced S and receptor-binding domain (RBD)-binding IgG antibodies and neutralizing antibodies against SARS-CoV-2 and several variants of concern. S-specific IFNγ, but not IL-4, -producing cells were also elicited. After SARS-CoV-2 challenge, vaccinated animals showed a significant strong reduction of virus loads in bronchoalveolar lavages (BAL) and decreased levels in throat and nasal mucosa. Remarkably, MVA-S also protected macaques from fever and infection-induced cytokine storm. Computed tomography and histological examination of the lungs showed reduced lung pathology in MVA-S-vaccinated animals. These findings favor the use of MVA-S as a potential vaccine for SARS-CoV-2 in clinical trials.


Assuntos
COVID-19 , Vaccinia virus , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Macaca mulatta , Pandemias , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus , Vaccinia virus/genética
5.
Viruses ; 13(8)2021 08 23.
Artigo em Inglês | MEDLINE | ID: covidwho-1367929

RESUMO

The post-acute phase of SARS-CoV-2 infection was investigated in rhesus (Macaca mulatta) and cynomolgus macaques (Macaca fascicularis). During the acute phase of infection, SARS-CoV-2 was shed via the nose and throat, and viral RNA was occasionally detected in feces. This phase coincided with a transient change in systemic immune activation. Even after the alleged resolution of the infection, computed tomography (CT) and positron emission tomography (PET)-CT revealed pulmonary lesions and activated tracheobronchial lymph nodes in all animals. Post-mortem histological examination of the lung tissue revealed mostly marginal or resolving minimal lesions that were indicative of SARS-CoV-2 infection. Evidence for SARS-CoV-2-induced histopathology was also found in extrapulmonary tissue samples, such as conjunctiva, cervical, and mesenteric lymph nodes. However, 5-6 weeks after SARS-CoV-2 exposure, upon necropsy, viral RNA was still detectable in a wide range of tissue samples in 50% of the macaques and included amongst others the heart, the respiratory tract and surrounding lymph nodes, salivary gland, and conjunctiva. Subgenomic messenger RNA was detected in the lungs and tracheobronchial lymph nodes, indicative of ongoing virus replication during the post-acute phase. These results could be relevant for understanding the long-term consequences of COVID-19 in humans.


Assuntos
COVID-19/patologia , COVID-19/virologia , Pulmão/patologia , SARS-CoV-2/fisiologia , Animais , Anticorpos Antivirais/sangue , COVID-19/imunologia , Citocinas/sangue , Modelos Animais de Doenças , Humanos , Pulmão/virologia , Linfonodos/patologia , Linfonodos/fisiopatologia , Macaca fascicularis , Macaca mulatta , RNA Mensageiro/análise , RNA Viral/análise , Sistema Respiratório/patologia , Sistema Respiratório/virologia , SARS-CoV-2/imunologia , Replicação Viral
6.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1205513

RESUMO

Safe and effective coronavirus disease-19 (COVID-19) vaccines are urgently needed to control the ongoing pandemic. While single-dose vaccine regimens would provide multiple advantages, two doses may improve the magnitude and durability of immunity and protective efficacy. We assessed one- and two-dose regimens of the Ad26.COV2.S vaccine candidate in adult and aged nonhuman primates (NHPs). A two-dose Ad26.COV2.S regimen induced higher peak binding and neutralizing antibody responses compared with a single dose. In one-dose regimens, neutralizing antibody responses were stable for at least 14 wk, providing an early indication of durability. Ad26.COV2.S induced humoral immunity and T helper cell (Th cell) 1-skewed cellular responses in aged NHPs that were comparable to those in adult animals. Aged Ad26.COV2.S-vaccinated animals challenged 3 mo after dose 1 with a SARS-CoV-2 spike G614 variant showed near complete lower and substantial upper respiratory tract protection for both regimens. Neutralization of variants of concern by NHP sera was reduced for B.1.351 lineages while maintained for the B.1.1.7 lineage independent of Ad26.COV2.S vaccine regimen.


Assuntos
Adenoviridae/imunologia , Envelhecimento/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Temperatura Corporal , Lavagem Broncoalveolar , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Relação Dose-Resposta Imunológica , Feminino , Imunidade Humoral , Cinética , Pulmão/patologia , Pulmão/virologia , Macaca mulatta , Masculino , Glicoproteína da Espícula de Coronavírus/metabolismo , Resultado do Tratamento , Vacinação , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA